Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Application of an Ordinal Optimization Algorithm to the Wafer Testing Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shin-Yeu Lin ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu ; Shih-Cheng Horng

In this correspondence, we have formulated a stochastic optimization problem to find the optimal threshold values to reduce the overkills of dies under a tolerable retest level in wafer testing process. The problem is a hard optimization problem with a huge solution space. We propose an ordinal optimization theory-based two-level algorithm to solve for a vector of good enough threshold values and compare with those obtained by others using a set of 521 real test wafers. The test results confirm the feature of controlling the retest level in our formulation, and the pairs of overkills and retests resulted from our approach are almost Pareto optimal. In addition, our approach spends only 6.05 min in total in a Pentium IV personal computer to obtain the good enough threshold values

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:36 ,  Issue: 6 )