By Topic

Highly-Parallel Decoding Architectures for Convolutional Turbo Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiyong He ; Dept. of Electr. & Comput. Eng., Laval Univ., Que. ; Fortier, P. ; Roy, S.

Highly parallel decoders for convolutional turbo codes have been studied by proposing two parallel decoding architectures and a design approach of parallel interleavers. To solve the memory conflict problem of extrinsic information in a parallel decoder, a block-like approach in which data is written row-by-row and read diagonal-wise is proposed for designing collision-free parallel interleavers. Furthermore, a warm-up-free parallel sliding window architecture is proposed for long turbo codes to maximize the decoding speeds of parallel decoders. The proposed architecture increases decoding speed by 6%-34% at a cost of a storage increase of 1% for an eight-parallel decoder. For short turbo codes (e.g., length of 512 bits), a warm-up-free parallel window architecture is proposed to double the speed at the cost of a hardware increase of 12%

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 10 )