Cart (Loading....) | Create Account
Close category search window
 

A Timing-Aware Probabilistic Model for Single-Event-Upset Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rejimon, T. ; Dept. of Electr. Eng., Univ. of South Florida, Tampa, FL ; Bhanja, S.

With device size shrinking and fast rising frequency ranges, the effect of cosmic radiations and alpha particles known as single-event upset (SEU) and single-event transients (SET), is a growing concern in logic circuits. Accurate understanding and estimation of SEU sensitivities of individual nodes is necessary to achieve better soft error hardening techniques at logic level design abstraction. We propose a probabilistic framework to the study the effect of inputs, circuits structure, and gate delays on SEU sensitivities of nodes in logic circuits as a single joint probability distribution function (pdf). To model the effect of timing, we consider signals at their possible arrival times as the random variables of interest. The underlying joint probability distribution function, consists of two components: ideal random variables without the effect of SEU and the random variables affected by the SEU. We use a Bayesian network to represent the joint pdf which is a minimal compact directional graph for efficient probabilistic modeling of uncertainty. The attractive feature of this model is that not only does it use the conditional independence to arrive at a sparse structure, but it also utilizes the same for smart probabilistic inference. We show that results with exact (exponential complexity) and approximate nonsimulative stimulus-free inference (linear in number of nodes and samples) on benchmark circuits yield accurate estimates in reasonably small computation time

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.