Cart (Loading....) | Create Account
Close category search window
 

Efficient Synchronization for Embedded On-Chip Multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Monchiero, M. ; Dipt. di Elettronica a Informazione, Politecnico di Milano, Milan ; Palermo, G. ; Silvano, C. ; Villa, O.

This paper investigates optimized synchronization techniques for shared memory on-chip multiprocessors (CMPs) based on network-on-chip (NoC) and targeted at future mobile systems. The proposed solution is based on the idea of locally performing synchronization operations requiring continuous polling of a shared variable, thus, featuring large contentions (e.g., spin locks and barriers). A hardware (HW) module, the synchronization-operation buffer (SB), has been introduced to queue and to manage the requests issued by the processors. By using this mechanism, we propose a spin lock implementation requiring a constant number of network transactions and memory accesses per lock acquisition. The SB also supports an efficient implementation of barriers. Experimental validation has been carried out by using GRAPES, a cycle-accurate performance/power simulation platform for multiprocessor systems-on-chip (MPSoCs). Two different architectures have been explored to prove that the proposed approach is effective independently from caches and coherence schemes adopted. For an eight-processor target architecture, we show that the SB-based solution achieves up to 50% performance improvement and 30% energy saving with respect to synchronization based on the caching of the synchronization variables and directory-based coherence protocol. Furthermore, we prove the scalability of the proposed approach when the number of processors increases

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.