By Topic

Band Selection for Hyperspectral Image Classification Using Mutual Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baofeng Guo ; Sch. of Electron. & Comput. Sci., Southampton Univ. ; Gunn, S.R. ; Damper, R.I. ; Nelson, J.D.B.

Spectral band selection is a fundamental problem in hyperspectral data processing. In this letter, a new band-selection method based on mutual information (MI) is proposed. MI measures the statistical dependence between two random variables and can therefore be used to evaluate the relative utility of each band to classification. A new strategy is described to estimate the MI using a priori knowledge of the scene, reducing reliance on a "ground truth" reference map, by retaining bands with high associated MI values (subject to the so-called "complementary" conditions). Simulations of classification performance on 16 classes of vegetation from the AVIRIS 92AV3C data set show the effectiveness of the method, which outperforms an MI-based method using the associated reference map, an entropy-based method, and a correlation-based method. It is also competitive with the steepest ascent algorithm at much lower computational cost

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:3 ,  Issue: 4 )