By Topic

Electrical characteristics of metal-insulator-semiconductor diodes and transistors with space charge electret insulators: towards nonvolatile organic memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Singh, Birendra ; Linz Inst. fur Org. Solar Cells, Johannes Kepler Univ., Linz ; Marjanovic, N. ; Sariciftci, N.S. ; Schwodiauer, R.
more authors

Organic field-effect transistors (OFETs) consist of a gate dielectric and an organic semiconductor film. The performance of organic electronic devices substantially depends on the dielectric properties of the insulating gate layer. Only a few key parameters, primarily the dielectric constant and the resulting device capacitance, have been regarded to be of central importance. Many insulating layers are however not simple dielectrics, an example are space charge gate electrets with internally trapped charges. Space charge gate electrets affect the electrical characteristics of diodes and transistors in a much more sophisticated manner, they are for example the key element in flash memories. We present impedance measurements of an organic metal-insulator-semiconductor (MIS) diode and corresponding measurements of a related organic field effect transistor. Both devices have a comparable design, with polyvinylalcohol as gate electret and the methanofullerene PCBM as organic semiconductor. Pronounced electret effects of charge injection and trapping are observed by impedance measurements of the MIS structure and these effects are found equally expressed in the electrical characteristics of the OFET configuration, reflecting first steps towards organic flash memories

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:13 ,  Issue: 5 )