By Topic

A Dynamic Growing Neural Network for Supervised or Unsupervised Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daxin Tian ; College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin Province, China. daxin222@163.com ; Yanheng Liu ; Da Wei

A dynamic growing neural network (DGNN) for supervised learning of pattern recognition or unsupervised learning of clustering is presented. The main ideas included in DGNN are growing, resonance, and post-prune. DGNN is called dynamic growing because it is based on the Hebbian learning rule and adds new neurons under certain conditions. When DGNN performs supervised learning, resonance will happen if the winner can't match the training example; this rule combines the ART/ARTMAP neural network and WTA learning rule. When DGNN performs unsupervised learning, post-prune is carried out to prevent over fitting the training data just like decision tree learning. DGNN's prune rule is based on the distance threshold. DGNN has some advantages: learning not only is stable because it grows under certain conditions; but also it is faster than back-propagation rules and favorable learned predictive accuracy in small, noisy, online or offline data sets. Three classes of simulations are performed on the primary benchmarks: circle-in-the-square and two-spirals-apart benchmarks are used to check DGNN's supervised learning and compare it with ARTMAP and BP neural networks; DGNN's unsupervised learning ability is checked on UCI Machine Learning Archive's Synthetic Control Chart Time Series data set

Published in:

2006 6th World Congress on Intelligent Control and Automation  (Volume:1 )

Date of Conference:

0-0 0