By Topic

Bayesian Wavelet-Based Methods for the Detection of Multiple Changes of the Long Memory Parameter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyungduk Ko ; Dept. of Math., Boise State Univ., ID ; Vannucci, M.

Long memory processes are widely used in many scientific fields, such as economics, physics, and engineering. Change point detection problems have received considerable attention in the literature because of their wide range of possible applications. Here we describe a wavelet-based Bayesian procedure for the estimation and location of multiple change points in the long memory parameter of Gaussian autoregressive fractionally integrated moving average models (ARFIMA(p,d,q)), with unknown autoregressive and moving average parameters. Our methodology allows the number of change points to be unknown. The reversible jump Markov chain Monte Carlo algorithm is used for posterior inference. The method also produces estimates of all model parameters. Performances are evaluated on simulated data and on the benchmark Nile river dataset

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 11 )