By Topic

Bayesian Surface and Underwater Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Karlsson ; Dept. of Electr. Eng., Linkoping Univ. ; F. Gustafsson

A common framework for maritime surface and underwater (UW) map-aided navigation is proposed as a supplement to satellite navigation based on the global positioning system (GPS). The proposed Bayesian navigation method is based on information from a distance measuring equipment (DME) which is compared with the information obtained from various databases. As a solution to the recursive Bayesian navigation problem, the particle filter is proposed. For the described system, the fundamental navigation performance expressed as the Crameacuter-Rao lower bound (CRLB) is analyzed and an analytic solution as a function of the position is derived. Two detailed examples of different navigation applications are discussed: surface navigation using a radar sensor and a digital sea chart and UW navigation using a sonar sensor and a depth database. In extensive Monte Carlo simulations, the performance is shown to be close to the CRLB. The estimation performance for the surface navigation application is in comparison with usual GPS performance. Experimental data are also successfully applied to the UW application

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 11 )