By Topic

Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In the framework of the CERN-RD50 Collaboration, the adoption of p-type substrates has been proposed as a suitable mean to improve the radiation hardness of silicon detectors up to fluencies of 1times10 16 n/cm2. In this work two numerical simulation models will be presented for p-type and n-type silicon detectors, respectively. A comprehensive analysis of the variation of the effective doping concentration (Neff), the leakage current density and the charge collection efficiency as a function of the fluence has been performed using the Synopsys T-CAD device simulator. The simulated electrical characteristics of irradiated detectors have been compared with experimental measurements extracted from the literature, showing a very good agreement. The predicted behaviour of p-type silicon detectors after irradiation up to 1016 n/cm2 shows better results in terms of charge collection efficiency and full depletion voltage, with respect to n-type material, while comparable behaviour has been observed in terms of leakage current density

Published in:

IEEE Transactions on Nuclear Science  (Volume:53 ,  Issue: 5 )