By Topic

Estimation of the Rigid-Body Motion From Three-Dimensional Images Using a Generalized Center-of-Mass Points Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Feng, B. ; Dept. of Radiol., Univ. of Massachusetts Med. Sch., Worcester, MA ; Bruyant, P.P. ; Pretorius, P.H. ; Beach, R.D.
more authors

We present an analytical method for the estimation of rigid-body motion in sets of three-dimensional (3-D) SPECT and PET slices. This method utilizes mathematically defined generalized center-of-mass points in images, requiring no segmentation. It can be applied to compensation of the rigid-body motion in both SPECT and PET, once a series of 3-D tomographic images are available. We generalized the formula for the center-of-mass to obtain a family of points comoving with the object's rigid-body motion. From the family of possible points we chose the best three points which resulted in the minimum root-mean-square difference between images as the generalized center-of-mass points for use in estimating motion. The estimated motion was used to sum the sets of tomographic images, or incorporated in the iterative reconstruction to correct for motion during reconstruction of the combined projection data. For comparison, the principle-axes method was also applied to estimate the rigid-body motion from the same tomographic images. To evaluate our method for different noise levels, we performed simulations with the MCAT phantom. We observed that though noise degraded the motion-detection accuracy, our method helped in reducing the motion artifact both visually and quantitatively. We also acquired four sets of the emission and transmission data of the Data Spectrum Anthropomorphic Phantom positioned at four different locations and/or orientations. From these we generated a composite acquisition simulating periodic phantom movements during acquisition. The simulated motion was calculated from the generalized center-of-mass points calculated from the tomographic images reconstructed from individual acquisitions. We determined that motion-compensation greatly reduced the motion artifact. Finally, in a simulation with the gated MCAT phantom, an exaggerated rigid-body motion was applied to the end-systolic frame. The motion was estimated from the end-diastolic and end-systolic ima- - ges, and used to sum them into a summed image without obvious artifact. Compared to the principle-axes method, in two of the three comparisons with anthropomorphic phantom data our method estimated the motion in closer agreement to the Polaris system than the principal-axes method, while the principle-axes method gave a more accurate estimation of motion in most cases for the MCAT simulations. As an image-driven approach, our method assumes angularly complete data sets for each state of motion. We expect this method to be applied in correction of respiratory motion in respiratory gated SPECT, and respiratory or other rigid-body motion in PET

Published in:

Nuclear Science, IEEE Transactions on  (Volume:53 ,  Issue: 5 )