By Topic

Effect of Collimator Selection on Tumor Detection for Dedicated Nuclear Breast Imaging Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hruska, C.B. ; Mayo Graduate Sch., Mayo Clinic, Rochester, MN ; O'Connor, M.K.

The effect of collimation on the detection of small (<1 cm) breast tumors with dedicated nuclear breast imaging systems was determined. A breast phantom modeling tumors 4-9 mm in diameter was imaged with three dedicated systems (GE Medical Prototype CZT, Gamma Medica LumaGEM 3200 s, and Digirad 2020 tc), and a conventional gamma camera (Elscint Helix) using a variety of system-specific and generic collimators ranging from LEUHS to LEUHR. Acquisitions were performed using clinically relevant count densities determined from analysis of patient exams. Tumors were placed at depths of 1, 3, and 5 cm from the collimator in a 6-cm-thick breast, and tumor-to-background ratio was varied from 3:1 to 35:1. Tumor signal-to-noise ratio (SNR) was measured in each image. SNR measurements showed that an all-purpose or high sensitivity collimator is optimal for the detection of small tumors close to the collimator face. The three pixilated systems gave similar results and performed significantly better than the conventional gamma camera

Published in:

Nuclear Science, IEEE Transactions on  (Volume:53 ,  Issue: 5 )