By Topic

Biological Systems Drug Infusion Controller Using FREN With Sliding Bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chidentree, T. ; Dept. of Electr. Eng., North-Chiangmai Univ., Chiang-Mai ; Sermsak, U.

In this paper, a direct adaptive control for drug infusion of biological systems is presented. The proposed controller is accomplished using our adaptive network called Fuzzy Rules Emulated Network (FREN). The structure of FREN resembles the human knowledge in the form of fuzzy if-then rules. After selecting the initial value of network's parameters, an on-line adaptive process based on Lyapunov's criteria is performed to improve the controller performance. The control signal from FREN is designed to keep in the region which is calculated by the modified Sliding Mode Control (SMC). The simulation results indicate that the proposed algorithm can satisfy the setting point and the robust performance

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 11 )