By Topic

Simple Linear Models of Scanning Impedance Imaging for Fast Reconstruction of Relative Conductivity of Biological Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. E. Oliphant ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT ; H. Liu ; A. R. Hawkins ; S. M. Schultz

Scanning impedance imaging (SII) uses a noncontacting electrical probe held at a known voltage and scanned over a thin sample on a ground plane in a conductive medium to obtain images of current. The current image is related in a nonlinear way to the conductivity of the sample. This paper develops the theory behind SII showing how the measured current relates to the desired conductivity. Also included is the development of a simplified, linear model that is effective in explaining many of the experimental results. Good agreement of the linear model with step-response data over an insulator is shown. The linear model shows that the current is a blurred version of the conductivity. Simple deblurring methods can, therefore, be applied to obtain relative conductivity images from the raw current data. Raw SII data from a flower-petal and a leaf sample are shown as well as relative conductivity images deblurred using the linear model

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:53 ,  Issue: 11 )