By Topic

Boundary Enhancement and Speckle Reduction for Ultrasound Images via Salient Structure Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Xie ; Chinese Univ. of Hong Kong, Shatin ; Y. Jiang ; H. -T. Tsui ; P. -A. Heng

In this paper, we present an approach for medical ultrasound (US) image enhancement. It is based on a novel perceptual saliency measure which favors smooth, long curves with constant curvature. The perceptual salient boundaries of tissues in US images are enhanced by computing the saliency of directional vectors in the image space, via a local searching algorithm. Our measure is generally determined by curvature changes, intensity gradient and the interaction of neighboring vectors. To restrain speckle noise during the enhancement process, an adaptive speckle suspension term is also combined into the proposed saliency measure. The results obtained on both simulated images and medical US data reveal superior performance of the novel approach over a number of commonly used speckle filters. Applications of US image segmentation show that although the proposed algorithm cannot remove the speckle noise completely and may discard weak anatomical structures in some case, it still provides a considerable gain to US image processing for computer-aided diagnosis

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:53 ,  Issue: 11 )