By Topic

Stokes-Anti-Stokes Iterative Resonator Method for Modeling Raman Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We present a novel modeling method to describe the steady-state and transient regimes of a continuous-wave pumped Raman laser emitting both Stokes and anti-Stokes photons. Our so-called "Stokes-anti-Stokes iterative resonator method" evaluates for every half round-trip time the longitudinal distribution of the intracavity pump, Stokes and anti-Stokes fields propagating in forward and backward directions. Although this Stokes-anti-Stokes iterative resonator method is widely applicable, its most important asset resides in its ability to accurately model Raman lasers that feature cavity enhancement of the pump power and that emit both Stokes and anti-Stokes photons. Important here is that our modeling method correctly incorporates the longitudinal intracavity field distributions, the generation of anti-Stokes photons, and the interference effects between incident and intracavity pump fields, and that it describes not only the lasers' steady-state operation but also their transient characteristics. We demonstrate for both a hydrogen-based and a silicon-based Raman laser with pump cavity enhancement that the Stokes-anti-Stokes iterative resonator method performs better than the modeling methods presently used for these categories of Raman lasers. Finally, to demonstrate the potentialities of our modeling method, we numerically simulate, for the first time according to our knowledge, the anti-Stokes emission generated by a silicon-based Raman laser

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 11 )