By Topic

Magnetohydrodynamic Interaction in the Shock Layer of a Wedge in a Hypersonic Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

This paper describes the results of an experimental investigation on the effect of magnetohydrodynamic (MHD) interaction with the plasma of the shock layer at a test body in a hypersonic argon flow. The hypersonic flow is obtained from the high-enthalpy arc-heated wind tunnel of Alta, Pisa, Italy, on Mach 6. Tests are carried out at heating chamber stagnation pressures of 0.65, 0.85, and 1 bar and magnetic fields of 0.15-0.35 T. The experimental observations are done by means of a set of electrical probes, an optical multichannel analyzer, and a fast shutter charge-coupled device camera. In order to maximize the effect of MHD interaction, the Faraday field is shorted, and a magnetic field perpendicular to the test body surface is used. An increase of the distance between the shock front and the body, owing to the MHD interaction, is observed. The MHD interaction effect is reduced by the low conductivity of the plasma in the boundary layer at the test body surface

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 5 )