By Topic

Assessing the ZR Machine's Potential for Producing Multi-keV X-Ray Yields in K-Shell Line and Free-Bound Continuum Radiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Thornhill, J.W. ; Plasma Phys. Div., Naval Res. Lab., Washington, DC ; Velikovich, A.L. ; Clark, R.W. ; Apruzese, J.P.
more authors

This paper presents theoretical extrapolations for the multi-keV X-ray radiation production capability of the 26-MA ZR accelerator at Sandia National Laboratories, which is scheduled to become available for experiments in 2007. These extrapolations are based on scaling models and ideas that have been developed over the years. These models and ideas have evolved and been refined through the process of benchmarking one-dimensional nonlocal-thermodynamic equilibrium magnetohydrodynamic model results to experimental K-shell yields and powers as well as inferred temperatures and densities. For this ZR assessment, the models are first benchmarked to K-shell yields obtained from argon, titanium, stainless-steel, and copper Z experiments and then they are applied to extrapolate yield predictions to the ZR machine. Extrapolations are based on 2-cm-length loads and similar wire configurations and nozzle designs as those employed in Z experiments. Projected K-shell yields for Ar (photon energy ~3 keV), Ti (~5 keV), stainless steel (~7 keV), and Cu (~8.6 keV) are 520, 300, 200, and 80 kJ, respectively. In addition, the high-energy free-bound continuum emission above 10 keV is calculated to be 40 kJ on ZR

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 5 )