By Topic

Active Spacecraft Potential Control: Results From the Double Star Project

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Torkar, K. ; Space Res. Inst., Austrian Acad. of Sci., Graz ; Fazakerley, A. ; Steiger, W.

The ion emitter instrument "active spacecraft potential control" (ASPOC) has been used successfully in several magnetospheric missions including the European Space Agency Cluster Project. An improved version has been developed for the equatorial spacecraft of the Chinese-European Double Star mission (TC-1) launched in December 2003. The modifications include a new design of the ion emitter modules. As a result, higher currents than in previous missions can be achieved. The main objective of the investigation is the reduction of positive spacecraft potential in order to minimize perturbations to the plasma measurements onboard, in particular to the plasma electron instrument PEACE. These data show an almost complete suppression of photoelectrons when ASPOC is emitting at 30- to 50-muA beam current. The angular distribution of the electrons in the presence of the ion beam is investigated in detail. The measurement of ambient electron distributions is highly improved

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 5 )