By Topic

Spectrally Resolved Approach for Modeling Short Pulse Amplification in Er ^{3+} -Doped Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yahel, E. ; Adv. Technol. Inst., Univ. of Surrey, Guildford ; Hess, O. ; Hardy, Amos

We study pulse propagation in Er3+-doped fiber amplifiers (EDFA) within the framework of a spectrally resolved pulse rate-propagation equations model. Our model accounts for the effects of gain dispersion, gain saturation, waveguide and chromatic dispersion, and amplified spontaneous emission. This model allows us to approximate the effects of nonlinear resonant dispersion on short pulse amplification in doped fibers, without reverting to the generalized nonlinear Schroedinger equation. Numerical results of the time-dependent power spectrum of the amplified pulse demonstrate subpicosecond pulse propagation in EDFAs

Published in:

Photonics Technology Letters, IEEE  (Volume:18 ,  Issue: 21 )