By Topic

An Optimal Nonorthogonal Separation of the Anisotropic Gaussian Convolution Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We give an analytical and geometrical treatment of what it means to separate a Gaussian kernel along arbitrary axes in Ropfn, and we present a separation scheme that allows us to efficiently implement anisotropic Gaussian convolution filters for data of arbitrary dimensionality. Based on our previous analysis we show that this scheme is optimal with regard to the number of memory accesses and interpolation operations needed. The proposed method relies on nonorthogonal convolution axes and works completely in image space. Thus, it avoids the need for a fast Fourier transform (FFT)-subroutine. Depending on the accuracy and speed requirements, different interpolation schemes and methods to implement the one-dimensional Gaussian (finite impulse response and infinite impulse response) can be integrated. Special emphasis is put on analyzing the performance and accuracy of the new method. In particular, we show that without any special optimization of the source code, it can perform anisotropic Gaussian filtering faster than methods relying on the FFT

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 11 )