By Topic

Perceptual Image Hashing Via Feature Points: Performance Evaluation and Tradeoffs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Monga, V. ; Xerox Innovation Group ; Evans, B.L.

We propose an image hashing paradigm using visually significant feature points. The feature points should be largely invariant under perceptually insignificant distortions. To satisfy this, we propose an iterative feature detector to extract significant geometry preserving feature points. We apply probabilistic quantization on the derived features to introduce randomness, which, in turn, reduces vulnerability to adversarial attacks. The proposed hash algorithm withstands standard benchmark (e.g., Stirmark) attacks, including compression, geometric distortions of scaling and small-angle rotation, and common signal-processing operations. Content changing (malicious) manipulations of image data are also accurately detected. Detailed statistical analysis in the form of receiver operating characteristic (ROC) curves is presented and reveals the success of the proposed scheme in achieving perceptual robustness while avoiding misclassification

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 11 )