By Topic

The Multidimensional Phase Unwrapping Integral and Applications to Microwave Tomographical Image Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Q. Fang ; Thayer Sch. of Eng., Dartmouth Coll., Hanover, NH ; P. M. Meaney ; K. D. Paulsen

Spatial unwrapping of the phase component of time varying electromagnetic fields has important implications in a range of disciplines including synthetic aperture radar (SAR) interferometry, MRI, optical confocal microscopy, and microwave tomography. This paper presents a fundamental framework based on the phase unwrapping integral, especially in the complex case where phase singularities are enclosed within the closed path integral. With respect to the phase unwrapping required when utilized in Gauss-Newton iterative microwave image reconstruction, the concept of dynamic phase unwrapping is introduced where the singularity location varies as a function of the iteratively modified property distributions. Strategies for dynamic phase unwrapping in the microwave problem were developed and successfully tested in simulations and clinical experiments utilizing large, high contrast targets to validate the approach

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 11 )