By Topic

Supporting Excess Real-Time Traffic With Active Drop Queue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Huang ; Dept. of Electr. & Syst. Eng., Pennsylvania Univ., Philadelphia, PA ; R. Guerin ; P. Gupta

Real-time applications often stand to benefit from service guarantees, and in particular delay guarantees. However, most mechanisms that provide delay guarantees also hard-limit the amount of traffic the application can generate, i.e., to enforce to a traffic contract. This can be a significant constraint and interfere with the operation of many real-time applications. Our purpose in this paper is to propose and investigate solutions that overcome this limitation. We have four major goals: 1) guarantee a delay bound to a contracted amount of real-time traffic; 2)transmit with the same delay bound as many excess real-time packets as possible; 3) enforce a given link sharing ratio between excess real-time traffic and other service classes, e.g., best-effort; and 4) preserve the ordering of real-time packets, if required. Our approach is based on a combination of buffer management and scheduling mechanisms for both guaranteeing delay bounds, while allowing the transmission of excess traffic. We evaluate the "cost" of our scheme by measuring the processing overhead of an actual implementation, and we investigate its performance by means of simulations using video traffic traces

Published in:

IEEE/ACM Transactions on Networking  (Volume:14 ,  Issue: 5 )