By Topic

Hybrid System State Tracking and Fault Detection Using Particle Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tafazoli, S. ; Canadian Space Agency, Saint-Hubert, Que. ; Xuehong Sun

When particle filters are used for fault detection, they have the problem of sample impoverishment, which means there are not enough particles that can transition to a rare-occurring faulty mode. The consequence is that the fault cannot be properly detected. This paper proposes a method to overcome this problem. Essentially, we develop an algorithm for tracking the states of hybrid systems where fault detection is modeled as a special case of the state tracking of a hybrid system. Extensive simulations are carried out to analyze the effects of various parameters on the performance of the algorithm. It is shown that our algorithm can detect both known and unknown faults using a very small number of particles

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 6 )