By Topic

Hybrid Model Predictive Control of Direct Injection Stratified Charge Engines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
N. Giorgetti ; Dipt. di Ingegneria dell'Informazione, Siena Univ. ; G. Ripaccioli ; A. Bemporad ; I. V. Kolmanovsky
more authors

This paper illustrates the application of hybrid modeling and model predictive control techniques to the management of air-to-fuel ratio and torque in advanced technology gasoline direct-injection stratified-charge (DISC) engines. A DISC engine is an example of a constrained hybrid dynamical system, because it can operate in two distinct modes (stratified and homogeneous) and because the mode-dependent constraints on the air-to-fuel ratio and on the spark timing need to be enforced during its operation to avoid misfire, knock, and high combustion variability. In this paper, we approximate the DISC engine dynamics as a two-mode discrete-time switched affine system. Using this approximation, we tune a hybrid model predictive controller with integral action based on online mixed-integer quadratic optimization, and show the effectiveness of the approach through simulations. Then, using an offline multiparametric optimization procedure, we convert the controller into an equivalent explicit piecewise affine form that is easily implementable in an automotive microcontroller through a lookup table of linear gains

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:11 ,  Issue: 5 )