By Topic

Exploiting Workload Parallelism for Performance and Power Optimization in Blue Gene

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salapura, V. ; IBM Thomas J. Watson Res. Center, NY ; Walkup, R. ; Gara, A.

Optimizing future supercomputing applications will depend on delivering the best performance for a given power budget. To determine the effect on efficiency of application-scaling parameters, this article analyzes system power and performance measurement results for real-world applications exploiting thread- and data-level parallelism on the Blue Gene/L system

Published in:

Micro, IEEE  (Volume:26 ,  Issue: 5 )