By Topic

Scalable two-stage Clos-network switch and module-first matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rojas-Cessa, R. ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ ; Chuan-bi Lin

Clos-network switches were proposed as a scalable architecture for the implementation of large-capacity circuit switches. In packet switching, the three-stage Clos-network architecture uses small switches as modules to assemble a switch with large number of ports or aggregated ports with high data rates. However, the configuration complexity of packet Clos-network switches is high as port matching and path routing must be performed. In the majority of the existing schemes, the configuration process performs routing after port-matching is achieved, and thus making port matching expensive in hardware and time complexity for a large number of ports. Here, we reduce the configuration complexity by performing routing first and port matching afterwards in a three-stage Clos-network switch. This approach applies the reduction concept of Clos networks to the matching process. This approach results in a feasible size of schedulers for up to Exabit-capacity switches, an independent configuration of the middle stage modules from port matches, a reduction of the matching communication overhead between different stages, and a release of the switching function to the last-stage modules in a three-stage switch. By using this novel matching scheme, we show that the number of stages of a Clos-network switch can be reduced to two, and we call this the two-stage Clos-network packet switch

Published in:

High Performance Switching and Routing, 2006 Workshop on

Date of Conference:

0-0 0