By Topic

Control of complex bio-molecular systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Ming Ho ; Dept. of Mech. & Aerosp. Eng., California Univ., Los Angeles, CA ; Pak Kin Wong

Nature has evolved extremely intelligent and complex adaptive systems. For instance, a cell fuses genetic processes with nanoscale sensors and actuators to result in one of the most efficient and autonomous molecular factories. These systems operate by integrating multiple levels of system architecture. Sensing, information processing, as well as cellular action are all fused at the local level. At each level of the system architecture, higher-order functionalities or emergent properties are often derived. These complexities cannot be simply extrapolated from its individual components and are far beyond our full understanding. This leads us towards cell mimetic approaches requiring fusion of biotechnology, nanotechnology, and informatics, for controlling and interrogating these complex biological systems. We have demonstrated that properly designed time-varying stimulations can self-organize and adjust the functionalities across multiple length scales to efficiently reach the desired control stare. This may yield new insight into unlocking and acquiring novel control modalities of the underlying mechanisms that drive the natural processes of life

Published in:

Robotics and Biomimetics (ROBIO). 2005 IEEE International Conference on

Date of Conference:

0-0 0