By Topic

Dual-Polarization Dual-Coverage Reflectarray for Space Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

A breadboard of a three-layer printed reflectarray for dual polarization with a different coverage in each polarization has been designed, manufactured, and tested. The reflectarray consists of three layers of rectangular patch arrays separated by a honeycomb and backed by a ground plane. The beam shaping for each polarization is achieved by adjusting the phase of the reflection coefficient at each reflective element independently for each linear polarization. The phase shift for each polarization is controlled by varying either the x or y patch dimensions. The dimensions of the rectangular patches are optimized to achieve the required phase shift for each beam at central and extreme frequencies in the working band. The reflectarray has been designed to produce a contoured beam for a European coverage in H-polarization in a 10% bandwidth, and a pencil beam to illuminate the East Coast in North America in V-polarization. The measured radiation patterns show that gain requirements are practically fulfilled in a 10% bandwidth for both coverages, and the electrical performances of the breadboard are close to those of a classical dual gridded reflector

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 10 )