Cart (Loading....) | Create Account
Close category search window
 

Electromechanical Model of Electrically Actuated Narrow Microbeams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A consistent one-dimensional distributed electromechanical model of an electrically actuated narrow microbeam with width/height between 0.5–2.0 is derived, and the needed pull-in parameters are extracted with different methods. The model accounts for the position-dependent electrostatic loading, the fringing field effects due to both the finite width and the finite thickness of a microbeam, the mid-plane stretching, the mechanical distributed stiffness, and the residual axial load. Both clamped–clamped and clamped-free (cantilever) microbeams are considered. The method of moments is used to estimate the electrostatic load. The resulting nonlinear fourth-order differential equation under appropriate boundary conditions is solved by two methods. Initially, a one-degree-of-freedom model is proposed to find an approximate solution of the problem. Subsequently, the meshless local Petrov–Galerkin (MLPG) and the finite-element (FE) methods are used, and results from the three methods are compared. For the MLPG method, the kinematic boundary conditions are enforced by introducing a set of Lagrange multipliers, and the trial and the test functions are constructed using the generalized moving least-squares approximation. The nonlinear system of algebraic equations arising from the MLPG and the FE methods are solved by using the displacement iteration pull-in extraction (DIPIE) algorithm. Three-dimensional FE simulations of narrow cantilever and clamped–clamped microbeams are also performed with the commercial code ANSYS. Furthermore, computed results are compared with those arising from other distributed models available in the literature, and it is shown that improper fringing fields give inaccurate estimations of the pull-in voltages and of the pull-in deflections. 1641

Published in:

Microelectromechanical Systems, Journal of  (Volume:15 ,  Issue: 5 )

Date of Publication:

Oct 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.