Cart (Loading....) | Create Account
Close category search window
 

Fabrication and Characterization of Three-Dimensional Microlens Arrays in Sol-Gel Glass

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Orhan, J.-B. ; Inst. of Microelectron. & Microsystems, Ecole Polytech. Fed. de Lausanne ; Parashar, V.K. ; Sayah, A. ; Gijs, M.A.M.

We propose a new replication process for the realization of thick microlenses in SiO2 glass with low organic content. We start by replicating an array of cylindrical micropillars made in SU-8 negative photoresist (Microchem) into poly-dimethylsiloxane (PDMS). The PDMS replica is filled with a photoresist (Clariant AZ 9260), applied to a glass substrate and soft-baked. After demoulding, we obtain cylindrical pillars that are given a dome-like shape by a thermal softening. This structure is used as a master in a second PDMS replication step. An in-house developed sol-gel glass material with low organic content is then poured in the second PDMS replica and subsequently thermally treated to obtain an array of thick, dense and crack-free microlenses. We characterize the shrinkage and the surface roughness of the microlenses. Using imaging of millimeter-size objects in an optical microscope setup, we characterize basic optical properties of the lenses, like focal length, magnification, and distribution of the light intensity around the focal plane

Published in:

Microelectromechanical Systems, Journal of  (Volume:15 ,  Issue: 5 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.