By Topic

Deriving Analytical Input–Output Relationship for Fuzzy Controllers Using Arbitrary Input Fuzzy Sets and Zadeh Fuzzy AND Operator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hao Ying ; Dept. of Electr. & Comput. Eng., Wayne State Univ., Detroit, MI

A fuzzy controller uses either Zadeh or product fuzzy AND operator, with the former being more frequently used than the latter. We have recently published a novel technique for deriving analytical input-output relation for the fuzzy controllers that use Zadeh AND operator and arbitrary trapezoidal input fuzzy sets, including triangular ones as special cases. In this paper, we have developed a general technique based on that technique to cover arbitrary types of input fuzzy sets. Moreover, we have established some necessary and sufficient conditions to characterize general relationship between shape of input fuzzy sets and shape of input space divisions, an important and integral issue because analytical relationship differs in different regions of input space. The new technique and the shape relations are applicable to any type of fuzzy controllers (e.g., Mamdani type or Takagi-Sugeno type). The analytical structures that we have derived provide an unprecedented opportunity to insightfully and rigorously examine the advantages and shortcomings of different design choices available for various components of the fuzzy controllers. We have focused on type selection for input fuzzy sets of Mamdani fuzzy controllers. Our preliminary analysis indicates that the fuzzy controllers using trapezoidal fuzzy sets may be understood (and possibly analyzed and designed) more sensibly and easily in the context of conventional control theory than the fuzzy controllers using any other types of fuzzy sets. Our proposition is that trapezoidal fuzzy sets should be the first choice and used most of time. Possible implication for automatic learning of input fuzzy sets via neural networks or genetic algorithms is briefly discussed

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:14 ,  Issue: 5 )