By Topic

High-Performance Low-Cost 10-Gb/s Coaxial DFB Laser Module Packaging by Conventional TO-Can Materials and Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. -T. Shih ; Dept. of Electron. Eng., Nat. Kaohsiung Univ. of Appl. Sci. ; M. -C. Lin ; W. -H. Cheng

High-performance low-cost 10-Gb/s coaxial DFB laser module packages made by conventional TO-Can materials and processes are developed and fabricated. The laser module has a built-in matching resistor to reduce the resonant phenomenon. In order to optimize the module's performance, a detailed equivalent circuit model is established to investigate both the DFB laser diode and the coaxial package comprehensively. This uncooled 10-Gb/s laser module operates at a high temperature of up to 105degC, and maintains an eye mask margin above 28% in the full operational temperature range to meet the stringent requirements of 10-Gb/s Ethernet for long-reach applications. This paper demonstrates that it is possible to fabricate cost-effective packages using existing low-cost TO-Can package technology while maintaining the high performance of the 10-Gb/s coaxial laser modules. Previously, the high-performance 10-Gb/s coaxial laser modules have only been available by using complicated design, customized components, and specialized fabrication process

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:12 ,  Issue: 5 )