By Topic

Robust Estimation of Bioaffinity Assay Fluorescence Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Glotsos, D. ; Med. Image Process. & Anal. Unit, Patras Univ. ; Tohka, J. ; Soukka, J. ; Soini, Juhani T.
more authors

In this paper, the challenging problem of robust mean-signal estimation of a single-step microparticle bioaffinity assay is investigated. For this purpose, a density estimation-based robust algorithm (DER) was developed. The DER algorithm was comparatively evaluated with four other parameter estimation methods (mean value, median filtering, least square estimation, Welsch robust m-estimator). Two important questions were raised and investigated: 1) Which of the five methods can robustly estimate the mean bioaffinity signal? and 2) How many microparticles need to be measured in order to obtain an accurate estimate of the mean signal value? To answer the questions, bootstrap and coefficient of variation (CV) analyses were performed. In the CV analysis, the DER algorithm gave the best results: The CV ranged from 0.8% to 4.9% when the number of microparticles used for the mean signal estimation varied from 800 to 30. In the bootstrap analysis of the standard error, the DER algorithm had the smallest variance. As a conclusion, it can be underlined that: 1) of all methods tested, the DER algorithm gave the most consistent and reproducible results according to the bootstrap and CV analysis; 2) using the DER algorithm accurate estimates could be calculated based on 80-100 particles, corresponding to a typical assay measurement time of 1 min; and 3) the investigated bioaffinity signals contained a large number of outliers (observations that severely deviate from the majority of data) and therefore robust techniques were necessary for the mean signal estimation tasks

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 4 )