By Topic

An integrated music recommendation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xuan Zhu ; Samsung Adv. Inst. of Technol., Beijing ; Shi, Y.-Y. ; Kim, H.-G. ; Ki-Wan Eom

In this paper, an integrated music recommendation system is proposed, which contains the functions of automatic music genre classification, automatic music emotion classification, and music similarity query. A novel tempo feature, named as log-scale modulation frequency coefficients, is presented in this paper. With AdaBoost algorithm, the proposed tempo feature is combined with timbre features and improves the performance of music genre and emotion classification. Comparing with the conventional methods based on timbre features, the precision of five-genre classification is enhanced from 86.8% to 92.2% and the accuracy of four-emotion classification is increased from 86.0% to 90.5%. Based on the results of music genre/emotion classification, we design a similarity query scheme, which can speed up the similarity query process without decreasing the precision. Furthermore, all the features employed in this paper are extracted from the data of MP3 partially decoding, which significantly reduces the feature extraction time

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:52 ,  Issue: 3 )