Cart (Loading....) | Create Account
Close category search window
 

A self-learning neural network composed of 1152 digital neurons in wafer-scale LSIs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Yasunaga, M. ; Hitachi Ltd., Tokyo, Japan ; Masuda, N. ; Yagyu, M. ; Asai, M.
more authors

The design, fabrication, and evaluation of a compact self-learning neural network made up of more than 1000 neurons are described. A time-sharing bus architecture decreases the number of circuits required and makes possible flexible and expandable networks. Neural functions and the back propagation (BP) algorithm were mapped to binary digital circuits. A dual-network architecture allows high-speed learning. This hardware can be connected to a host workstation and used for a wide range of artificial neural networks. Signature verification and stock price prediction have already been demonstrated with this hardware. The peak learning speed was about 10 times faster than BP simulation by an S-820 Hitachi supercomputer

Published in:

Neural Networks, 1991. 1991 IEEE International Joint Conference on

Date of Conference:

18-21 Nov 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.