By Topic

Sanger's Like Systems for Generalized Principal and Minor Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hasan, M.A. ; Dept. of Electr. & Comput. Eng., Minnesota Duluth Univ., MN

In this paper generalizations of Sanger's learning rule for nondefinite matrices are explored. It is shown that the left and right principal components of any matrix can be computed so that these components upper triangulize the original matrix. We also modified the original Sanger's system to obtain new dynamical systems with a larger domain of attraction. Stability analysis for several Sanger's type systems for the standard and generalized principal, and minor component analyzers applied to nonsymmetric matrices is developed

Published in:

Sensor Array and Multichannel Processing, 2006. Fourth IEEE Workshop on

Date of Conference:

12-14 July 2006