By Topic

Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong, Yao-Win ; Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu ; Scaglione, A.

Broadcasting is a method that allows the distributed nodes in a wireless sensor network to share its data efficiently among each other. Due to the limited energy supplies of a sensor node, energy efficiency has become a crucial issue in the design of broadcasting protocols. In this paper, we analyze the energy savings provided by a cooperative form of broadcast, called the opportunistic large arrays (OLA), and compare it to the performance of conventional multi-hop networks where no cooperation is utilized for transmission. The cooperation in OLA allows the receivers to utilize for detection the accumulation of signal energy provided by the transmitters that are relaying the same symbol. In this work, we derive the optimal energy allocation policy that minimizes the total energy cost of the OLA network subject to the SNR (or BER) requirements at all receivers. Even though the cooperative broadcast protocol provides significant energy savings, we prove that the optimum energy assignment for cooperative networks is an NP-complete problem and, thus, requires high computational complexity in general. We then introduce several suboptimal yet scalable solutions and show the significant energy-savings that one can obtain even with the approximate solutions

Published in:

Wireless Communications, IEEE Transactions on  (Volume:5 ,  Issue: 10 )