By Topic

A Rigorous Study of Package and PCB Effects on W-CDMA Upconverter RFICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. -Y. Han ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung ; J. -M. Wu ; T. -S. Horng ; C. -C. Tu

A Volterra-series analysis is presented to study the package and printed circuit board (PCB) effects on the linearity of two wideband code-division multiple-access upconverter RF integrated circuit (RFIC) designs. The first design adopts a recently popular micromixer with a class AB input stage. The second design is based on a commonly used Gilbert mixer with emitter degeneration. Both upconverter RFICs are designed to have the same adjacent channel power ratio (ACPR) in the chip-level simulation. After fabrication, packaging, and testing on the PCB, the micromixer-based design consumes less direct current, but causes more degradation in the ACPR performance due to the influence of package and PCB when compared to the Gilbert mixer-based design. The theoretical analysis indicates that the micromixer-based upconverter RFIC is rather susceptible to the parasitic effects from the ground interconnect and, therefore, it needs a better package solution with a lower ground inductance for practical use. Comparison between theory and measurement shows good agreement in predicting the variations of conversion gain and ACPR due to the presence of the package and PCB

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:54 ,  Issue: 10 )