By Topic

Modeling Strategy for Back-to-Back Three-Level Converters Applied to High-Power Wind Turbines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Portillo, R.C. ; Dipt. Ingenieria Electronica, Escuela Superior de Ingenieros de Sevilla, Seville ; Prats, M.M. ; Leon, J.I. ; Sanchez, J.A.
more authors

Three-level converters are becoming a realistic alternative to the conventional converters in high-power wind-energy applications. In this paper, a complete analytical strategy to model a back-to-back three-level converter is described. This tool permits us to adapt the control strategy to the specific application. Moreover, the model of different loads can be incorporated to the overall model. Both control strategy and load models are included in the complete system model. The proposed model pays special attention to the unbalance in the capacitors' voltage of three-level converters, including the dynamics of the capacitors' voltage. In order to validate the model and the control strategy proposed in this paper, a 3-MW three-level back-to-back power converter used as a power conditioning system of a variable speed wind turbine has been simulated. Finally, the described strategy has been implemented in a 50-kVA scalable prototype as well, providing a satisfactory performance

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:53 ,  Issue: 5 )