Cart (Loading....) | Create Account
Close category search window
 

ARSA: An Attack-Resilient Security Architecture for Multihop Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanchao Zhang ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ ; Yuguang Fang

Multihop wireless mesh networks (WMNs) are finding ever-growing acceptance as a viable and effective solution to ubiquitous broadband Internet access. This paper addresses the security of WMNs, which is a key impediment to wide-scale deployment of WMNs, but thus far receives little attention. We first thoroughly identify the unique security requirements of WMNs for the first time in the literature. We then propose ARSA, an attack-resilient security architecture for WMNs. In contrast to a conventional cellular-like solution, ARSA eliminates the need for establishing bilateral roaming agreements and having real-time interactions between potentially numerous WMN operators. With ARSA in place, each user is no longer bound to any specific network operator, as he or she ought to do in current cellular networks. Instead, he or she acquires a universal pass from a third-party broker whereby to realize seamless roaming across WMN domains administrated by different operators. ARSA supports efficient mutual authentication and key agreement both between a user and a serving WMN domain and between users served by the same WMN domain. In addition, ARSA is designed to be resilient to a wide range of attacks. We also discuss other important issues such as incontestable billing

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.