By Topic

Design and control of tensegrity robots for locomotion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Paul ; Mech. & Aerosp. Eng. Dept., Cornell Univ., Ithaca, NY, USA ; F. J. Valero-Cuevas ; H. Lipson

The static properties of tensegrity structures have been widely appreciated in civil engineering as the basis of extremely lightweight yet strong mechanical structures. However, the dynamic properties and their potential utility in the design of robots have been relatively unexplored. This paper introduces robots based on tensegrity structures, which demonstrate that the dynamics of such structures can be utilized for locomotion. Two tensegrity robots are presented: TR3, based on a triangular tensegrity prism with three struts, and TR4, based on a quadrilateral tensegrity prism with four struts. For each of these robots, simulation models are designed, and automatic design of controllers for forward locomotion are performed in simulation using evolutionary algorithms. The evolved controllers are shown to be able to produce static and dynamic gaits in both robots. A real-world tensegrity robot is then developed based on one of the simulation models as a proof of concept. The results demonstrate that tensegrity structures can provide the basis for lightweight, strong, and fault-tolerant robots with a potential for a variety of locomotor gaits

Published in:

IEEE Transactions on Robotics  (Volume:22 ,  Issue: 5 )