By Topic

A novel adaptive single-phase reclosure scheme using dual-window transient energy ratio and mathematical morphology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiangning Lin ; Dept. of Electr. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Hanli Weng ; Haifeng Liu ; Wenjun Lu
more authors

It is well known that most adaptive autoreclosure schemes are dependent on the voltages sampled from the transmission lines to distinguish between the transient faults and the permanent faults; therefore, the transforming characteristics or required mounting position of the voltage transducer will limit the applications of voltage-based schemes. To overcome this disadvantage, a criterion of a dual-window transient energy ratio (ER) based on mode current to implement the adaptive autoreclosure of transmission lines is proposed in this paper. It is demonstrated that the ER approaches 1 during the steady-state where it increases greatly during some moments; for instance, for the fault occurrence, breaker opening and closing, the existences of primary and secondary arcs, and arc extinguishing. Therefore, the setting of the criterion is easy. To effectively extract the high-frequency energy of the mode current, a novel concept of generalized multiresolution morphological gradient (GMMG) is put forward on the basis of the multiresolution morphological gradient (MMG). The design of GMMG is more flexible and the relative factors of the structure element can be regulated according to the desirable effects. Electromagnetic Transients Program-based simulation results show that the GMMG-based autoreclosure scheme improves the reliability of fault discrimination and promises to be applied to the real power systems

Published in:

IEEE Transactions on Power Delivery  (Volume:21 ,  Issue: 4 )