By Topic

Fast detection and classification of defects on treated metal surfaces using a backpropagation neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Neubauer, C. ; Dept. of Electron. Syst., Fraunhofer-Inst. for Integrated Circuits, Erlangen, Germany

A fast classifier based on a neural network is described which is the central part of an optical inspection system. Defects on treated metal surfaces are detected and classified by textural segmentation. The main purpose of this work is the development of an optical inspection system for a wide range of real-time applications. Therefore, the preprocessing of the image data is reduced to the calculation of gray-value histograms on a 10×10 pixel window. By using only eight gray-value classes in the histograms, an efficient reduction of the data is obtained. The histograms calculated on each window are presented to a three-layered perceptron net for defect detection and classification. This method is applied to a 100% surface inspection of rolling bearing metal rings. Depending on the defect class investigated the misclassification rate of the window classifier ranged from 1.5 to 11.5%

Published in:

Neural Networks, 1991. 1991 IEEE International Joint Conference on

Date of Conference:

18-21 Nov 1991