By Topic

A Pipeline-Based Genetic Algorithm Accelerator for Time-Critical Processes in Real-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiann-Tsong Sheu ; Dept. of Commun. Eng., Nat. Central Univ., Chung-li ; Yue-Ru Chuang

The meta-heuristic methods, genetic algorithms (GAs), are frequently used to obtain optimal solutions for some complicated problems. However, due to the characteristic of natural evolution, the methods slowly converge the derived solutions to an optimal solution and are usually used to solve complicated and offline problems. While, in a real-world scenario, there are some complicated but real-time problems that require being solved within a short response time and have to obtain an optimal or near optimal solution due to performance considerations. Thus, the convergence speed of GAs becomes an important issue when it is applied to solve time-critical optimization problems. To address this, this paper presents a novel method, named hyper-generation GA (HG-GA), to improve the convergence speed of GAs. The proposed HG-GA breaks the general rule of generation-based evolution and uses a pipeline operation to accelerate the convergence speed of obtaining an optimal solution. Based on an example of a time-critical scheduling process in an optical network, both analysis and simulation results show that the HG-GA can generate more and better chromosomes than general GAs within the same evolutionary period. The rapid convergence property of the HG-GA increases its potential to solve many complicated problems in real-time systems

Published in:

IEEE Transactions on Computers  (Volume:55 ,  Issue: 11 )