By Topic

Simulation-Based Functional Test Generation for Embedded Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Deterministic functional test pattern generation has been a long-standing open problem, which is an important problem to be solved for both design verification and manufacturing testing. One key in developing a practical functional test pattern generation approach is to avoid the exponential growth of the test generation complexity in terms of the design size. This work proposes a novel functional test generation approach where simulation results are used to guide the generation of additional tests. Our methodology avoids the complexity growth issue by converting some modules in a design into simpler and more efficient models. Then, these models are used to facilitate the actual test generation process. We develop two sets of techniques to achieve these conversions: Boolean learning for random logic and arithmetic learning for datapath modules. We demonstrate the effectiveness and discuss the. limitations of these techniques through experiments on benchmark circuits. Last, we validate the overall test generation methodology based on the OpenRISC 1200 microprocessor

Published in:

IEEE Transactions on Computers  (Volume:55 ,  Issue: 11 )