Cart (Loading....) | Create Account
Close category search window
 

Channel Stress Modulation and Pattern Loading Effect Minimization of Milli-Second Super Anneal for Sub-65nm High Performance SiGe CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Chien-Hao Chen ; Res. & Dev., Taiwan Semicond. Manuf. Co. Ltd., Hsinchu ; Nieh, C.F. ; Lin, D.W. ; Ku, K.C.
more authors

In this paper, we present an advanced integration approach using milli-second anneal technique to enhance device performance. In addition to enhanced poly-silicon activation, the device gain resulted from channel stress modulation, and retarded dopant diffusion can be obtained through process optimization including rapid-thermal anneal (RTA), capping layer, and milli-second anneal. More than 15% NMOS performance gain is demonstrated without undergoing milli-second-anneal-induced pattern loading effect and re-crystallization defect. No obvious stress relaxation and driving current degradation are observed in epi-SiGe PMOS. Moreover, the performance gain is increased while lowering the RTA temperature, suggesting that our proposed approach may open an alternative pathway for 45nm technology node and beyond

Published in:

VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.