By Topic

Nanoscale Thermal Transport and Microrefrigerators on a Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Shakouri ; Jack Baskin Sch. of Eng., California Univ., Santa Cruz, CA, USA

In this paper we review recent advances in nanoscale thermal and thermoelectric transport with an emphasis on the impact on integrated circuit (IC) thermal management. We will first review thermal conductivity of low-dimensional solids. Experimental results have shown that phonon surface and interface scattering can lower thermal conductivity of silicon thin films and nanowires in the sub-100-nm range by a factor of two to five. Carbon nanotubes are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal conductivities of thousands of W/mK and high mechanical strength. We then concentrate on the fundamental interaction between heat and electricity, i.e., thermoelectric effects, and how nanostructures are used to modify this interaction. We will review recent experimental and theoretical results on superlattice and quantum dot thermoelectrics as well as solid-state thermionic thin-film devices with embedded metallic nanoparticles. Heat and current spreading in the three-dimensional electrode configuration, allow removal of high-power hot spots in IC chips. Several III-V and silicon heterostructure integrated thermionic (HIT) microcoolers have been fabricated and characterized. They have achieved cooling up to 7 degC at 100 degC ambient temperature with devices on the order of 50 mum in diameter. The cooling power density was also characterized using integrated thin-film heaters; values ranging from 100 to 680 W/cm2 were measured. Response time on the order of 20-40 ms has been demonstrated. Calculations show that with an improvement in material properties, hot spots tens of micrometers in diameter with heat fluxes in excess of 1000 W/cm2 could be cooled down by 20 degC-30 degC. Finally we will review some of the more exotic techniques such as thermotunneling and analyze their potential application to chip cooling

Published in:

Proceedings of the IEEE  (Volume:94 ,  Issue: 8 )