By Topic

A wafer-scale 3-D circuit integration technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Burns, J.A. ; Lincoln Lab., MIT, Lexington, MA ; Aull, B.F. ; Chang-Lee Chen ; Chang-Lee Chen
more authors

The rationale and development of a wafer-scale three-dimensional (3-D) integrated circuit technology are described. The essential elements of the 3-D technology are integrated circuit fabrication on silicon-on-insulator wafers, precision wafer-wafer alignment using an in-house-developed alignment system, low-temperature wafer-wafer bonding to transfer and stack active circuit layers, and interconnection of the circuit layers with dense-vertical connections with sub-Omega 3-D via resistances. The 3-D integration process is described as well as the properties of the four enabling technologies. The wafer-scale 3-D technology imposes constraints on the placement of the first lithographic level in a wafer-stepper process. Control of wafer distortion and wafer bow is required to achieve submicrometer vertical vias. Three-tier digital and analog 3-D circuits were designed and fabricated. The performance characteristics of a 3-D ring oscillator, a 1024 times 1024 visible imager with an 8-mum pixel pitch, and a 64 times 64 Geiger-mode laser radar chip are described

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 10 )